Lower Bounds for Sampling Algorithms for Estimating the Average

نویسندگان

  • Ran Canetti
  • Guy Even
  • Oded Goldreich
چکیده

We show lower bounds on the number of sample points and on the number of coin tosses used by general sampling algorithms for estimating the average value of functions over a large domain. The bounds depend on the desired precision and on the error probability of the estimate. Our lower bounds match upper bounds established by known algorithms, up to a mul-tiplicative constant. Furthermore, we give a non-constructive proof of existence of an algorithm that improves the known upper bounds by a constant factor.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Estimating ‎U‎pper and Lower Bounds For Industry Efficiency With Unknown ‎Technology‎

With a brief review of the studies on the industry in Data Envelopment Analysis (DEA) framework, the present paper proposes inner and outer technologies when only some basic information is available about the technology. Furthermore, applying Linear Programming techniques, it also determines lower and upper bounds for directional distance function (DDF) measure, overall and allocative efficienc...

متن کامل

Lower Bounds for Approximating Graph Parameters via Communication Complexity

In a celebrated work, Blais, Brody, and Matulef [5] developed a technique for proving property testing lower bounds via reductions from communication complexity. Their work focused on testing properties of functions, and yielded new lower bounds as well as simplified analyses of known lower bounds. Here, we take a further step in generalizing the methodology of [5] to analyze the query complexi...

متن کامل

A Sample of Samplers: A Computational Perspective on Sampling

We consider the problem of estimating the average of a huge set of values. That is, given oracle access to an arbitrary function f : {0, 1} → [0, 1], we wish to estimate 2 Px∈{0,1}n f(x) upto an additive error of ǫ. We are allowed to employ a randomized algorithm that may err with probability at most δ. We survey known algorithms for this problem and focus on the ideas underlying their construc...

متن کامل

Exact maximum coverage probabilities of confidence intervals with increasing bounds for Poisson distribution mean

 ‎A Poisson distribution is well used as a standard model for analyzing count data‎. ‎So the Poisson distribution parameter estimation is widely applied in practice‎. ‎Providing accurate confidence intervals for the discrete distribution parameters is very difficult‎. ‎So far‎, ‎many asymptotic confidence intervals for the mean of Poisson distribution is provided‎. ‎It is known that the coverag...

متن کامل

Doubly Aggressive Selective Sampling Algorithms for Classification

Online selective sampling algorithms learn to perform binary classification, and additionally they decided whether to ask, or query, for a label of any given example. We introduce two stochastic linear algorithms and analyze them in the worst-case mistake-bound framework. Even though stochastic, for some inputs, our algorithms query with probability 1 and make an update even if there is no mist...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Inf. Process. Lett.

دوره 53  شماره 

صفحات  -

تاریخ انتشار 1995